單元十四 汽車常用繼電器電路實驗

一、前言

現今汽車使用大量的電子裝置達到安全、舒適、通訊等目的,如 ABS、電動窗、冷卻風扇控制、燃油控制等均需利用繼電器來控制電路,故繼電器的學習在現代汽車修護行業中佔了相當重要角色。

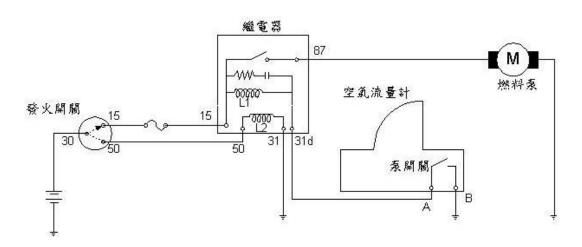


圖 14.1 汽油泵控制電路

如圖 14.1 所示為配置翼片式空氣流量計車種之電動汽油泵控制電路。泵開關位於空氣流量計 A、B 插腳,當 A和 B 導通時,繼電器始有電磁產生,汽油泵方能作用。主要控制方式有三種狀況

1.引擎啟動時

引擎啟動時,電流由點火開關的 15 端子流經保險絲到繼電器 15 端子,同時電流從點火開關的 50 端子流至繼電器的 50 端子進入 L2線

圈,使繼電器 ON,汽油泵開始運轉。當引擎開始運轉後,汽缸開始 吸入空氣,AB兩接點保持導通狀態,電流流至繼電器 L1線圈。

2.引擎啟動後

引擎啟動後,點火開關由 START 位置彈回到 ON,流經繼電器 L₂的電流被切斷;引擎此時在運轉狀態,AB 兩接點仍然保持導通位置,故電流持續流經 L₁線圈,汽油泵也持續運轉。

3.引擎停止

當引擎停止時, A和 B接點成斷路狀態,流經 L₁線圈的無法搭鐵形成 完整迴路,電流切斷,汽油泵也就停止運轉。

二、實習目的

- 1. 瞭解直流繼電器在汽車上之應用
- 2. 瞭解直流繼電器之種類及型式。

三、相關知識

繼電器為電磁效應之應用,其功用是以流過繼電器線圈端之小電流來控制流過負載端之大電流。

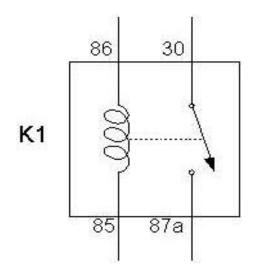
1.品質良好之繼電器須具備以下之條件

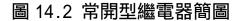
能控制較大之電能

作用性能不易受環境溫度變化影響

能承受震動

耐久性高


能耐高溫


2.型式:分為常開型(Normally Open N.O)、常閉型(Normally Closed)、複合型(Changeover)繼電器等。

常開型(Normally Open N.O):繼電器接點正常位置時為打開狀態,電流通過後為閉合狀態,一般有四個端子。

常閉型(Normally Closed N.C):繼電器接點正常位置時為閉合狀態,電流通過後為打開狀態,一般有四個端子。

複合型(Changeover)繼電器:繼電器內部含有一組常開接點和一組常閉接點,一般有五個端子。

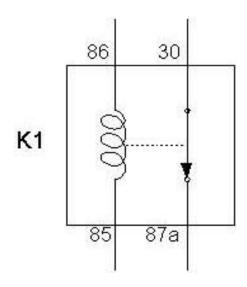


圖 14.3 常閉型繼電器簡圖

3.代號意義:

歐式(DIN):常用於歐系車種,主要生產廠商如 BOSCH 皆於繼電器外殼印上以下之號碼,其他如美系、日系車種也有大量使用。繼電器代號意義如下:

常開型繼電器:四個端子分別為87、86、30、85。如圖14.2。

30 接電瓶電源 86 接繼電器線圈正極端

87 接繼電器輸出端 85 接搭鐵

常閉型繼電器:四個端子分別為 87a、86、30、85。如圖 14.3。

30 接電瓶電源 86 接繼電器線圈正極端

87a 接繼電器輸出端 85 接搭鐵

複合型(Changeover)繼電器如圖 14.4。

五個端子分別為 87、86、30、85、87a。

30 接電瓶電源 86 接繼電器線圈正極端

87 接繼電器常開輸出端 85 接搭鐵

87a 接繼電器常閉輸出端

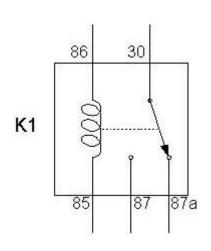


圖 14.4 複合型繼電器簡

另外一種常用如 NISSAN 車種所使用的繼電器其編號方式如下:

常開式繼電器:四個端子分別為1、2、3、5。

1接繼電器線圈正極端 2接搭鐵

3 接電瓶電源 5 接繼電器輸出端

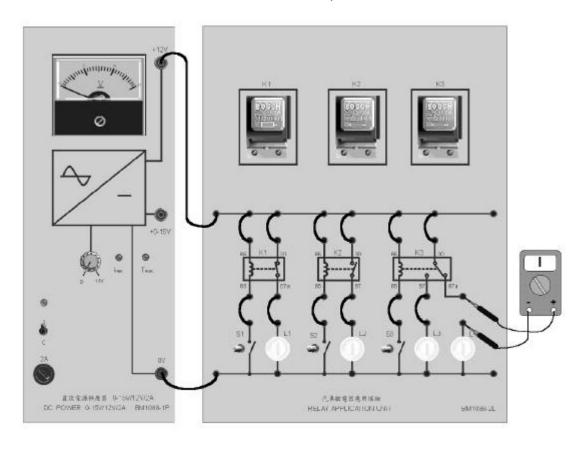
複合型繼電器:五個端子分別為1、2、3、4、5。

1接繼電器線圈正極端 2接搭鐵

3 接電瓶電源 5 接常開接點繼電器輸出端

4 常閉接點輸出端

比較上述兩種代號意義,我們可以得知以下結果:


日式小型繼電器	歐式繼電器	極性
1	86	繼電器線圈正極
2	85	繼電器線圈負極
3	30	電瓶電源
4	87a	常閉接點輸出端
5	87	常開接點輸出端

四、實習儀器設備

- 1. 數位三用電表
- 2. 汽車繼電器應用模組 BM1088-2L
- 3. 直流電源供應器 BM1088-1P
- 4. 直流電壓/電流表模組 BM1088-2D
- 5. 連接線

五、工作單

- 1. 如圖 14.5, 完成模組之接線
- 2. 將量測結果填入下列各表內
- 3. 注意一次只能操作一種繼電器,不可同時實驗

表一

	開關S1打開		開關 S 1 閉合	
實習名稱	控制電流(繼	工作電流	控制電流(繼	工作電流
	電器線圈)	(燈泡)	電器線圈)	(燈泡)
常閉型				
繼電器	mA	mA	mA	mA

表二

	開關S2打開		開關S2閉合	
實習名稱	控制電流(繼	工作電流	控制電流(繼	工作電流
	電器線圈)	(燈泡)	電器線圈)	(燈泡)
常開型				
繼電器	MA	mA	mA	mA

	開關S3打開		開關S3閉合	
實習名稱	控制電流(繼	工作電流	控制電流(繼	工作電流
	電器線圈)	(燈泡)	電器線圈)	(燈泡)
	常閉型 87a		常閉型 87a	
複合型	mA	mA	mA	mA
繼電器				
	常開型 87		常閉型 87a	
	mA	mA	mA	mA

六、討論

1. 繼電器選用時應注意哪些事項?

2. 模組中之燈泡更換其它較大瓦特數燈泡時,其變化如何?

3. 試比較直流繼電器和汽車蜂鳴器作用原理之差異?