實習五 並聯電路與克希荷夫電流定律

一 前言

汽車電系中,各個電器負載大都以並聯方式連接。包括頭燈、霧燈,室內燈、儀錶板上各種指示燈等,都經由自己的控制開關再並聯連接而後接至電瓶。並聯最主要的優點為,各個電器負載或電路可以獨立作用而不互相影響。因此,左邊的頭燈燒毀,右邊的頭燈仍然會亮。音響壞了,雨刷仍會繼續盡責的作他該做的事。典型的並聯電路如圖 5.1 所示之福特金全壘打儀錶板照明燈電路。

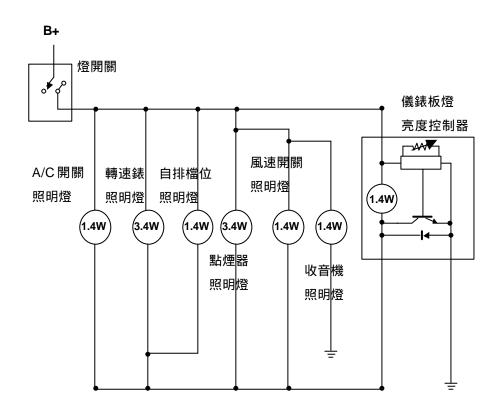


圖 5.1 福特金全壘打儀錶板照明燈電路

二 實習目的

瞭解並聯電路及克希荷夫電流定律之應用並聯電路。

三 相關知識

1. 克希荷夫電流定律:流入電路內任一節點之電流和,必等於流出此節點之電流和。以圖 5.2 之節點 D 為例,流入節點 D 的電流只有 I_0 ,流出節點 D 的電流有 I_8 I_8 根據克希荷夫電流定律:

$$I_1 + I_2 + I_3 = I_0$$

就圖 5.2 之電路來說,電流從電瓶正極流出(電流值為 I_0),到達 D 點兵分三路,分別流入三個支路中(電流值分別為 I_1 、 I_2 、 I_3)。此三個支路電流到達 M 點又會合成總電流 I_0 流回電瓶負極,構成一個完整的迴路。

- 2. 並聯時, 各支路的電壓降相等。
- 3. 流入各支路電流之大小,由該支路之電阻值決定,並以歐姆定律求出。 例如,圖 5.2 中, $I_1=V_T/R_1$ 。

注意:圖 5.2 中,各電阻可代表各種電器之電阻值,如燈泡、馬達等,不一定只是電阻器。一般為了簡化起見,通常使用電阻器進行各種電路實驗,以了解電路原理。

四、實驗儀器設備

1. 直流電源供應器

2. 電阻電路模組二

3. 直流電壓/電流錶模組

BM1088-1P BM1088-2R BM1088-2D

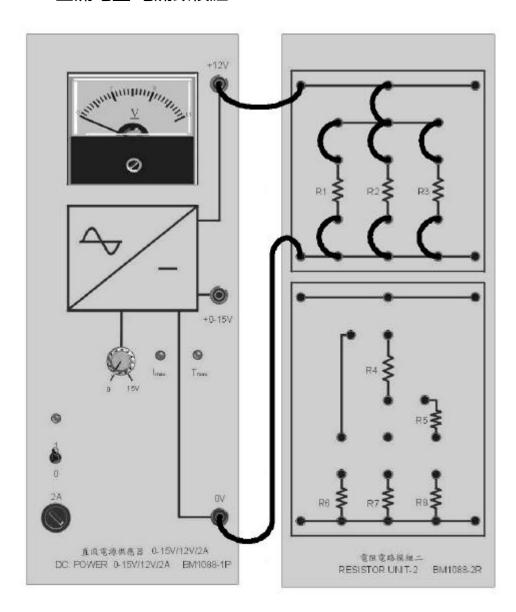


圖 5.2 BM1088-2R

五、工作單

- ∞如圖 5.2 所示,完成接線。
- 經 將電源開關打開,調整輸出電壓為 12V。
- 1. 使用電壓表量測 F-I、G-K、H-L 各端點間之電壓降 V_{FI} 、 V_{GK} 、 及 V_{HL} ,並填入表 1 中。

表 1

衣 1
電源電壓 = 12V
·
R ₁ 之電壓降 V _{FI} =
D
R_2 之電壓降 V_{GK} =
R ₃ 之電壓降 V _{HL} =

2. 使用電流表量測 A-B、C-F、D-G、E-H 各端點間之電流值 I_0 、 I_1 、 I_2 、及 I_3 , 並填入表 2 中。

表 2

迴路總電流 I₀ =
流入 R ₁ = 20 之電流值 , I ₁ =
流入 R ₂ = 300 之電流值 , I ₂ =
流入 R ₃ = 1K 之電流值 , I ₃ =

- 3. 討論:
 - (1) 觀察表 1 之三個電壓量測值,可得到什麼結論?

當電阻並聯時,

0

(2) 計算表 2 中三個電流值之和: I ₁ +I ₂ +I ₃ = 。	
由此可知: 流入電路內任一節點之	
	•
(3) 比較表 2 三個電流值,何者最大?何者最小?其原因為何	······································
	0
(4)利用歐姆定律計算迴路之總電阻:	
(5)請繪圖並說明本實驗在汽車電系之應用電路。	